A Comparative Analysis of Classification Algorithms in Land Cover Mapping: A Study of MLC, Mahalanobis Distance, NNC, and SVM for 2023 and 2018: Case study of Wasit province, central Iraq
Yasir Abdulameer Nayyef Aldabbagh ;
Ali Ibrahim Zghair Alnasrawi
Published: 2025/08/26
Abstract
The research presents in this paper a comparison between different classification procedures for land cover data between the present and four years prior. The techniques include Maximum Likelihood Classification (MLC), Mahalanobis Distance, Nearest Neighbor Classification (NNC), and Support Vector Machines (SVM). Confusion matrices have been employed to evaluate performance, measuring categorical biases across water, vegetation, urban structures, soil, and other land cover types for each method. The results reveal variations in accuracy not only over time but also across algorithms, offering insights into the strengths and limitations of these classification systems under different temporal conditions. The study aims to lay the foundation for future adaptations of these approaches to improve land cover analysis and long-term monitoring.
Keywords
A Comparative Analysis of Classification Algorithms in Land Cover Mapping: A Study of MLC, Mahalanobis Distance, NNC, and SVM for 2023 and 2018: Case study of Wasit province, central Iraq is licensed under CC BY 4.0
References
- Aboelnour, M., & Engel, B. A. (2018). Application of remote sensing techniques and geographic information systems to analyze land surface temperature in response to land use/land cover change in Greater Cairo Region, Egypt. Journal of Geographic Information System, 10(1), 57-88.
- Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote sensing, 12(7), 1135.
- Shivakumar, B. R., & Rajashekararadhya, S. V. (2018). Investigation on land cover mapping capability of maximum likelihood classifier: a case study on North Canara, India. Procedia computer science, 143, 579-586.
- Polat, N., & Kaya, Y. (2021). Investigation of the performance of different pixel-based classification methods in land use/land cover (LULC) determination. Türkiye İnsansız Hava Araçları Dergisi, 3(1), 1-6.
- Ramezan, C. A., Warner, T. A., Maxwell, A. E., & Price, B. S. (2021). Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sensing, 13(3), 368.
- Adugna, T., Xu, W., & Fan, J. (2022). Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing, 14(3), 574.
- Xie, Z., Chen, Y., Lu, D., Li, G., & Chen, E. (2019). Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote. Sens., 11, 164.
- Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., & Zhang, Y. (2018). Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sensing, 10(7), 1119.
- Song, H., Kim, Y., & Kim, Y. (2019). A patch-based light convolutional neural network for land-cover mapping using Landsat-8 images. Remote Sensing, 11(2), 114.
- Dong, S., Zhuang, Y., Yang, Z., Pang, L., Chen, H., & Long, T. (2019). Land Cover Classification from VHR Optical Remote Sensing Images by Feature Ensemble Deep Learning Network. IEEE Geoscience and Remote Sensing Letters.
- Carrasco, L., O’Neil, A. W., Morton, R. D., & Rowland, C. S. (2019). Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine.Remote Sensing, 11(3), 288.
- Wu, W., Zucca, C., Karam, F., & Liu, G. (2016). Enhancing the performance of regional land cover mapping. Int. J. Appl. Earth Obs. Geoinformation, 52, 422-432.
- Wu, W., Zucca, C., Karam, F., & Liu, G. (2016). Enhancing the performance of regional land cover mapping. Int. J. Appl. Earth Obs. Geoinformation, 52, 422-432. https://doi.org/10.1016/J.JAG.2016.07.014 .
- Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., Aung, K., Markert, K., Clinton, N., Anderson, E., Cutter, P., Goldstein, J., Housman, I., Bhandari, B., Potapov, P., Matin, M., Uddin, K., Pham, H., Khanal, N., & Ganz, D. (2020). Primitives as building blocks for constructing land cover maps. Int. J. Appl. Earth Obs. Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101979 .
- Zhang, X., Liu, L., Chen, X., Xie, S., & Gao, Y. (2019). Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote. Sens., 11, 1056. https://doi.org/10.3390/RS11091056.
- Tong, X., Xia, G., & Zhu, X. (2022). Enabling country-scale land cover mapping with meter-resolution satellite imagery. Isprs Journal of Photogrammetry and Remote Sensing, 196, 178 - 196. https://doi.org/10.1016/j.isprsjprs.2022.12.011.
- Preidl, S., Lange, M., & Doktor, D. (2020). Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery. Remote Sensing of Environment, 240, 111673. https://doi.org/10.1016/j.rse.2020.111673 .
- Elmahdy, S., & Mohamed, M. (2023). Regional mapping and monitoring land use/land cover changes: a modified approach using an ensemble machine learning and multitemporal Landsat data. Geocarto International, 38. https://doi.org/10.1080/10106049.2023.2184500.
- Bartsch, A., Höfler, A., Kroisleitner, C., & Trofaier, A. (2016). Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote. Sens., 8, 979. https://doi.org/10.3390/RS8120979 .
- Ejikeme, J., Emengini, J., Ugwu, E., & Umenweke, D. (2019). A Comparative Evaluation of Different Techniques of Supervised Classification in Landuse/Landcover Mapping of Awka South L.G.A, Anambra State, Nigeria.. Journal of Environment and Earth Science.
- Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Al‐Ansari, N., Geertsema, M., Amiri, M., Gholamnia, M., Dou, J., & Ahmad, A. (2021). Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote. Sens., 13, 1349.
- Otukei, J., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinformation, 12, S27-S31. https://doi.org/10.1016/J.JAG.2009.11.002
- Talukdar, S., Singha, P., Mahato, S., , S., Pal, S., Liou, Y., & Rahman, A. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations - A Review. Remote. Sens., 12, 1135.
- Ahmad, A., & Quegan, S. (2012, November). Analysis of maximum likelihood classification technique on Landsat 5 TM satellite data of tropical land covers. In 2012 IEEE international conference on control system, computing and engineering (pp. 280-285). IEEE.
- Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on pattern analysis and machine intelligence, 22(1), 4-37.
- Alimjan, G., Sun, T., Jumahun, H., Guan, Y., Zhou, W., & Sun, H. (2017). A hybrid classification approach based on support vector machine and k-nearest neighbor for remote sensing data. International Journal of Pattern Recognition and Artificial Intelligence, 31(10), 1750034.
- Saadatfar, H., Khosravi, S., Joloudari, J. H., Mosavi, A., & Shamshirband, S. (2020). A new K-nearest neighbors classifier for big data based on efficient data pruning. Mathematics, 8(2), 286.
- Wu, G., Zhao, Z., Fu, G., Wang, H., Wang, Y., Wang, Z., ... & Huang, L. (2019, June). A Fast k NN-Based Approach for Time Sensitive Anomaly Detection over Data Streams. In International conference on computational science (pp. 59-74). Cham: Springer International Publishing.
- Elkan, C. (2007). Nearest Neighbor Classification. . https://doi.org/10.1007/springerreference_63665.
- Goldstein, M. (1972). Kn -nearest Neighbor Classification. IEEE Trans. Inf. Theory, 18, 627-630. https://doi.org/10.1109/TIT.1972.1054888.
- Hall, P., Park, B., & Samworth, R. (2008). Choice of neighbor order in nearest-neighbor classification. Annals of Statistics, 36, 2135-2152. https://doi.org/10.1214/07-AOS537.
- Short, R., & Fukunaga, K. (1981). The optimal distance measure for nearest neighbor classification. IEEE Trans. Inf. Theory, 27, 622-626. https://doi.org/10.1109/TIT.1981.1056403.
- Hastie, T., & Tibshirani, R. (1995). Discriminant Adaptive Nearest Neighbor Classification. , 409-415. https://doi.org/10.1109/34.506411.
- Domeniconi, C., Peng, J., & Gunopulos, D. (2002). Locally Adaptive Metric Nearest-Neighbor Classification. IEEE Trans. Pattern Anal. Mach. Intell., 24, 1281-1285. https://doi.org/10.1109/TPAMI.2002.1033219
- Gou, J., Zhan, Y., Rao, Y., Shen, X., Wang, X., & He, W. (2014). Improved pseudo nearest neighbor classification. Knowl. Based Syst., 70, 361-375. https://doi.org/10.1016/j.knosys.2014.07.020.
- Dasgupta, S., & So, G. (2023). Online nearest neighbor classification. ArXiv, abs/2307.01170. https://doi.org/10.48550/arXiv.2307.01170.
- Barber, D. (2011). Nearest neighbour classification. , 322-328. https://doi.org/10.1017/CBO9780511804779.019
- Dasgupta, S., & Kpotufe, S. (2020). Nearest Neighbor Classification and Search. , 403-423. https://doi.org/10.1017/9781108637435.024.
- Hastie, T., & Tibshirani, R. (1995). Discriminant Adaptive Nearest Neighbor Classification. , 409-415. https://doi.org/10.1109/34.506411.
- Gou, J., Zhan, Y., Rao, Y., Shen, X., Wang, X., & He, W. (2014). Improved pseudo nearest neighbor classification. Knowl. Based Syst., 70, 361-375. https://doi.org/10.1016/j.knosys.2014.07.020.
- Domeniconi, C., Peng, J., & Gunopulos, D. (2002). Locally Adaptive Metric Nearest-Neighbor Classification. IEEE Trans. Pattern Anal. Mach. Intell., 24, 1281-1285.
- Rahmawan, F., , H., Mega, W., & Dhuita, P. (2025). Comparison of The Accuracy of K-Nearest Neighbor and Roberta Algorithm in Analysis of Sentiment on Miawaug Youtube Channel Comments. Teknika. https://doi.org/10.34148/teknika.v14i1.1117
- Xu, Q. (2025). Application of an Intelligent English Text Classification Model with Improved KNN Algorithm in the Context of Big Data in Libraries. Systems and Soft Computing. https://doi.org/10.1016/j.sasc.2025.200186.
- Faradila, Z., Homaidi, A., & Prasetyo, J. (2025). Classification of Anaemia Status Using The K-Nearest Neighbor Algorithm. G-Tech: Jurnal Teknologi Terapan. https://doi.org/10.70609/gtech.v9i1.6377.
- Hu, L. Y., Huang, M. W., Ke, S. W., & Tsai, C. F. (2016). The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus, 5, 1-9.
- Kok, Z. H., Shariff, A. R. M., Alfatni, M. S. M., & Khairunniza-Bejo, S. (2021). Support vector machine in precision agriculture: a review. Computers and Electronics in Agriculture, 191, 106546.