MUMSPI: A Model for Usability Measurement of Single-Platform Interface for Multi-Tasking in Big Data Tools
Mony Ho ;
Sokroeurn Ang ;
Sopheaktra Huy ;
Midhunchakkaravarthy Janarthanan
Published: 2026
Abstract
This study presents MUMSPI, a model to evaluate the usability of a single-platform interface that supports multi-tasking, compared to command line interface (CLI) in Big Data workflows. Eighty IT participants performed the same tasks using Hadoop, Sqoop, and Python through two interfaces: the Linux Terminal and Jupyter Notebook. Usability was measured across five dimensions such as effectiveness, efficiency, learnability, robustness, and satisfaction. Results show that Jupyter outperformed the Terminal in all areas, with higher task completion (85.18%), faster execution (38.33 minutes), fewer errors (35.12%), and better user satisfaction (SUS score: 70.31%). Overall MUMSPI scores were 74.03% for Jupyter and 45.95% for the Terminal. These results confirm MUMSPI’s value and support the use of integrated graphical environments for better usability, especially for users with limited technical skills.
Keywords
MUMSPI: A Model for Usability Measurement of Single-Platform Interface for Multi-Tasking in Big Data Tools is licensed under CC BY 4.0
References
- Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 1-2. https://doi.org/10.1109/MIC.2012.50
- Hannan, S. A. (2016). An overview on Big Data and Hadoop. International Journal of Computer Applications, 154(10), 31-32. https://www.researchgate.net/publication/372631347
- Xu, Z., Shi, D., & Tu, Z. (2021). Research on diagnostic information of smart medical care based on big data. Journal of Healthcare Engineering, 2021, Article 9977358. https://doi.org/10.1155/2021/9977358
- Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 2-3. https://doi.org/10.1016/j.jneumeth.2006.11.017
- Reddy, S. S., & Dhanalakshmi, S. (2024). Cleaning big data – An interactive approach with Sqoop and Hive. INNOVAR Journal, 17(1), 3-4.
- Soibam, B., & Roman, G. (2024). PySmooth: A Python tool for the removal and correction of genotyping errors. BMC Research Notes, 17, Article 103. https://doi.org/10.1186/s13104-024-06753-4
- Åkesson, L. (n.d.). The TTY demystified. Linus Åkesson. https://www.linusakesson.net/programming/tty/
- Perkel, J. M. (2018, November 1). By Jupyter, it all makes sense. Nature, 563(7729), 1–2. https://doi.org/10.1038/d41586-018-07196-1
- Thomas, R., & Cholia, S. (2021). Interactive supercomputing with Jupyter. Computing in Science & Engineering, 23(2), 1-3. https://doi.org/10.1109/MCSE.2021.3059037
- Rule, A., Birmingham, A., & Horne, B. (2015). Notebook: Visualizing and sharing computational analyses. ACM SIGOPS Operating Systems Review, 49(1), 1–2. https://doi.org/10.1145/2723872.2723885
- Xu, Y. (2021). Research on diagnostic information of smart medical care based on big data. Journal of Healthcare Engineering, 2021, Article ID 6640870. https://doi.org/10.1155/2021/6640870
- Wang, Q., Lee, Y., & Chong, A. Y. L. (2020). The use of Jupyter notebooks in education: A systematic review. Computers in Human Behavior, 115, 106621. https://doi.org/10.1016/j.chb.2020.106621
- Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. (2019). Jupyter notebooks as a tool for open science: An empirical study. Proceedings of the 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), 12–14. https://doi.org/10.1109/JCDL.2019.00012
- Barba, L. A. (2021). The Python/Jupyter ecosystem: Today’s problem-solving environment for computational science. Computing in Science & Engineering, 23(3), 434. https://doi.org/10.1109/MCSE.2021.3074693
- Pérez, F., & Granger, B. E. (2015). An introduction to Jupyter. O'Reilly Media. https://conferences.oreilly.com/jupyter/jupytercon
- Vista, F. P., IV, & Chong, K. T. (2019). Design and real‐time implementation of a 3‐stage CnW heading system on an Ubuntu Linux‐embedded board. Journal of Sensors, 2019, Article ID 1345202. https://doi.org/10.1155/2019/1345202
- Stoet, G. (2010). PsyToolkit: A software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 1096–1100. https://doi.org/10.3758/BRM.42.4.1096
- Ali, M. I., Qadir, J., Rasool, R. U., Sathiaseelan, A., Zwitter, A., & Crowcroft, J. (2018). Big data‐driven smart transportation: A review. IEEE Access, 6, 42211–42258. https://doi.org/10.1109/ACCESS.2018.2868771
- Chung, W.-C., Chen, C.-C., Ho, J.-M., Lin, C.-Y., Hsu, W.-L., Wang, Y.-C., Lee, D. T., Lai, F., Huang, C.-W., & Chang, Y.-J. (2014). CloudDOE: A user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce. PLoS ONE, 9(6), e98146. https://doi.org/10.1371/journal.pone.0098146
- González-García, A., de Amescua, A., & García-Holgado, A. (2023). Design and implementation of a graphical interface for command line-based data processing pipelines. Applied Sciences, 13(3), 1183. https://doi.org/10.3390/app13031183
- Li, K., & Gui, N. (2020). CMS: A continuous machine-learning and serving platform for industrial big data. Future Internet, 12(6), 102. https://doi.org/10.3390/fi12060102
- Oestreich, M., Holsten, L., Agrawal, S., Dahm, K., Koch, P., Jin, H., Becker, M., & Ulas, T. (2024). hCoCena: A toolbox for network-based co-expression analysis and horizontal integration of transcriptomic datasets. Software Impacts, 19, 100663. https://doi.org/10.1016/j.simpa.2024.100663
- Kumwichar, P. (2023). Enhancing learning about epidemiological data analysis using R for graduate students in medical fields with Jupyter Notebook: Classroom action research. JMIR Medical Education, 9, e47394. https://doi.org/10.2196/47394
- Granger, B. E., & Pérez, F. (2021). Jupyter: Thinking and storytelling with code and data. Computing in Science & Engineering, 23(2), 1–2. https://doi.org/10.1109/MCSE.2021.3059263
- Cheng, S., Guo, H., Li, S., & Liu, H. (2022). Integrating cloud computing and Jupyter Notebooks for remote sensing education. Remote Sensing, 14(14), 3359. https://doi.org/10.3390/rs14143359
- Nguyen, H., Case, D. A., & Rose, A. S. (2018). NGLview—Interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7), 1241–1242. https://doi.org/10.1093/bioinformatics/btx789
- Bussonnier, M., Freeman, J., Haven, T., Head, T., Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda, Y., Pérez, F., Ragan-Kelley, B., Willing, C., & Grout, J. (2021). JupyterHub: A multi-user server for Jupyter notebooks. Software Impacts, 9, 100072. https://doi.org/10.1016/j.simpa.2021.100072
- Grewal, M., & Aseri, T. C. (2024). A comparative study of online learning platforms using Jupyter Notebook and Google Colab. Education and Information Technologies. Advance online publication. https://doi.org/10.1007/s10639-025-13507-7
- Nielsen, J. (1995). 10 usability heuristics for user interface design. Nielsen Norman Group. https://www.nngroup.com/articles/ten-usability-heuristics/
- International Organization for Standardization. (2018). ISO 9241-11:2018 – Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts. https://www.iso.org/standard/63500.html
- International Organization for Standardization. (2018). ISO 9241-11:2018 – Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts. https://www.iso.org/standard/63500.html
- Brooke, J. (1996). SUS: A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland (Eds.), Usability evaluation in industry (pp. 189–194). London: Taylor & Francis.
- George, E. O. (2024, January). Empirical research: A comprehensive guide for academics. Paperpal. https://paperpal.com/blog/researcher/empirical-research-a-comprehensive-guide-for-academics
- Saha, S. (2024, June). What is experimental research: Definition, types & examples. Entropik. https://www.entropik.io/blogs/experimental-research
- Johnson, R. B., & Onwuegbuzie, A. J. (2004). Quantitative and qualitative research: A view for clarity. International Journal of Education, 22(3), 371–372. https://doi.org/10.1016/j.ijintrel.2010.07.004
- Singh, A. S., & Masuku, M. B. (2014). Sampling techniques & determination of sample size in applied statistics research: An overview. International Journal of Economics, Commerce and Management, 2(11), 78. https://ijecm.co.uk/wp-content/uploads/2014/11/21131.pdf
- Mikemclaren. (2016, October 28). Normalization when max and min values are reversed [Online forum post]. Stack Exchange. https://stats.stackexchange.com/questions/252455/normalization-when-max-and-min-values-are-reversed