Jordanian Journal of Informatics and Computing

ISSN: 3080-6828 (Online)

MUMSPI: A Model for Usability Measurement of Single-Platform Interface for Multi-Tasking in Big Data Tools

by 

Mony Ho ;

Sokroeurn Ang ;

Sopheaktra Huy ;

Midhunchakkaravarthy Janarthanan

PDF logoPDF

Published: 2026

Abstract

This study presents MUMSPI, a model to evaluate the usability of a single-platform interface that supports multi-tasking, compared to command line interface (CLI) in Big Data workflows. Eighty IT participants performed the same tasks using Hadoop, Sqoop, and Python through two interfaces: the Linux Terminal and Jupyter Notebook. Usability was measured across five dimensions such as effectiveness, efficiency, learnability, robustness, and satisfaction. Results show that Jupyter outperformed the Terminal in all areas, with higher task completion (85.18%), faster execution (38.33 minutes), fewer errors (35.12%), and better user satisfaction (SUS score: 70.31%). Overall MUMSPI scores were 74.03% for Jupyter and 45.95% for the Terminal. These results confirm MUMSPI’s value and support the use of integrated graphical environments for better usability, especially for users with limited technical skills.

Keywords

Big Data tools usabilityMUMSPI modelsingle-platform interfaceJupyter Notebookmulti-tasking workflows

References

  1. Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 1-2. https://doi.org/10.1109/MIC.2012.50
  2. Hannan, S. A. (2016). An overview on Big Data and Hadoop. International Journal of Computer Applications, 154(10), 31-32. https://www.researchgate.net/publication/372631347
  3. Xu, Z., Shi, D., & Tu, Z. (2021). Research on diagnostic information of smart medical care based on big data. Journal of Healthcare Engineering, 2021, Article 9977358. https://doi.org/10.1155/2021/9977358
  4. Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 2-3. https://doi.org/10.1016/j.jneumeth.2006.11.017
  5. Reddy, S. S., & Dhanalakshmi, S. (2024). Cleaning big data – An interactive approach with Sqoop and Hive. INNOVAR Journal, 17(1), 3-4.
  6. Soibam, B., & Roman, G. (2024). PySmooth: A Python tool for the removal and correction of genotyping errors. BMC Research Notes, 17, Article 103. https://doi.org/10.1186/s13104-024-06753-4
  7. Åkesson, L. (n.d.). The TTY demystified. Linus Åkesson. https://www.linusakesson.net/programming/tty/
  8. Perkel, J. M. (2018, November 1). By Jupyter, it all makes sense. Nature, 563(7729), 1–2. https://doi.org/10.1038/d41586-018-07196-1
  9. Thomas, R., & Cholia, S. (2021). Interactive supercomputing with Jupyter. Computing in Science & Engineering, 23(2), 1-3. https://doi.org/10.1109/MCSE.2021.3059037
  10. Rule, A., Birmingham, A., & Horne, B. (2015). Notebook: Visualizing and sharing computational analyses. ACM SIGOPS Operating Systems Review, 49(1), 1–2. https://doi.org/10.1145/2723872.2723885
  11. Xu, Y. (2021). Research on diagnostic information of smart medical care based on big data. Journal of Healthcare Engineering, 2021, Article ID 6640870. https://doi.org/10.1155/2021/6640870
  12. Wang, Q., Lee, Y., & Chong, A. Y. L. (2020). The use of Jupyter notebooks in education: A systematic review. Computers in Human Behavior, 115, 106621. https://doi.org/10.1016/j.chb.2020.106621
  13. Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. (2019). Jupyter notebooks as a tool for open science: An empirical study. Proceedings of the 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), 12–14. https://doi.org/10.1109/JCDL.2019.00012
  14. Barba, L. A. (2021). The Python/Jupyter ecosystem: Today’s problem-solving environment for computational science. Computing in Science & Engineering, 23(3), 434. https://doi.org/10.1109/MCSE.2021.3074693
  15. Pérez, F., & Granger, B. E. (2015). An introduction to Jupyter. O'Reilly Media. https://conferences.oreilly.com/jupyter/jupytercon
  16. Vista, F. P., IV, & Chong, K. T. (2019). Design and real‐time implementation of a 3‐stage CnW heading system on an Ubuntu Linux‐embedded board. Journal of Sensors, 2019, Article ID 1345202. https://doi.org/10.1155/2019/1345202
  17. Stoet, G. (2010). PsyToolkit: A software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 1096–1100. https://doi.org/10.3758/BRM.42.4.1096
  18. Ali, M. I., Qadir, J., Rasool, R. U., Sathiaseelan, A., Zwitter, A., & Crowcroft, J. (2018). Big data‐driven smart transportation: A review. IEEE Access, 6, 42211–42258. https://doi.org/10.1109/ACCESS.2018.2868771
  19. Chung, W.-C., Chen, C.-C., Ho, J.-M., Lin, C.-Y., Hsu, W.-L., Wang, Y.-C., Lee, D. T., Lai, F., Huang, C.-W., & Chang, Y.-J. (2014). CloudDOE: A user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce. PLoS ONE, 9(6), e98146. https://doi.org/10.1371/journal.pone.0098146
  20. González-García, A., de Amescua, A., & García-Holgado, A. (2023). Design and implementation of a graphical interface for command line-based data processing pipelines. Applied Sciences, 13(3), 1183. https://doi.org/10.3390/app13031183
  21. Li, K., & Gui, N. (2020). CMS: A continuous machine-learning and serving platform for industrial big data. Future Internet, 12(6), 102. https://doi.org/10.3390/fi12060102
  22. Oestreich, M., Holsten, L., Agrawal, S., Dahm, K., Koch, P., Jin, H., Becker, M., & Ulas, T. (2024). hCoCena: A toolbox for network-based co-expression analysis and horizontal integration of transcriptomic datasets. Software Impacts, 19, 100663. https://doi.org/10.1016/j.simpa.2024.100663
  23. Kumwichar, P. (2023). Enhancing learning about epidemiological data analysis using R for graduate students in medical fields with Jupyter Notebook: Classroom action research. JMIR Medical Education, 9, e47394. https://doi.org/10.2196/47394
  24. Granger, B. E., & Pérez, F. (2021). Jupyter: Thinking and storytelling with code and data. Computing in Science & Engineering, 23(2), 1–2. https://doi.org/10.1109/MCSE.2021.3059263
  25. Cheng, S., Guo, H., Li, S., & Liu, H. (2022). Integrating cloud computing and Jupyter Notebooks for remote sensing education. Remote Sensing, 14(14), 3359. https://doi.org/10.3390/rs14143359
  26. Nguyen, H., Case, D. A., & Rose, A. S. (2018). NGLview—Interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7), 1241–1242. https://doi.org/10.1093/bioinformatics/btx789
  27. Bussonnier, M., Freeman, J., Haven, T., Head, T., Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda, Y., Pérez, F., Ragan-Kelley, B., Willing, C., & Grout, J. (2021). JupyterHub: A multi-user server for Jupyter notebooks. Software Impacts, 9, 100072. https://doi.org/10.1016/j.simpa.2021.100072
  28. Grewal, M., & Aseri, T. C. (2024). A comparative study of online learning platforms using Jupyter Notebook and Google Colab. Education and Information Technologies. Advance online publication. https://doi.org/10.1007/s10639-025-13507-7
  29. Nielsen, J. (1995). 10 usability heuristics for user interface design. Nielsen Norman Group. https://www.nngroup.com/articles/ten-usability-heuristics/
  30. International Organization for Standardization. (2018). ISO 9241-11:2018 – Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts. https://www.iso.org/standard/63500.html
  31. International Organization for Standardization. (2018). ISO 9241-11:2018 – Ergonomics of human-system interaction – Part 11: Usability: Definitions and concepts. https://www.iso.org/standard/63500.html
  32. Brooke, J. (1996). SUS: A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland (Eds.), Usability evaluation in industry (pp. 189–194). London: Taylor & Francis.
  33. George, E. O. (2024, January). Empirical research: A comprehensive guide for academics. Paperpal. https://paperpal.com/blog/researcher/empirical-research-a-comprehensive-guide-for-academics
  34. Saha, S. (2024, June). What is experimental research: Definition, types & examples. Entropik. https://www.entropik.io/blogs/experimental-research
  35. Johnson, R. B., & Onwuegbuzie, A. J. (2004). Quantitative and qualitative research: A view for clarity. International Journal of Education, 22(3), 371–372. https://doi.org/10.1016/j.ijintrel.2010.07.004
  36. Singh, A. S., & Masuku, M. B. (2014). Sampling techniques & determination of sample size in applied statistics research: An overview. International Journal of Economics, Commerce and Management, 2(11), 78. https://ijecm.co.uk/wp-content/uploads/2014/11/21131.pdf
  37. Mikemclaren. (2016, October 28). Normalization when max and min values are reversed [Online forum post]. Stack Exchange. https://stats.stackexchange.com/questions/252455/normalization-when-max-and-min-values-are-reversed